Do. Apr 25th, 2024

TH Köln entwickelt neuartige Membrantechnologie zur Trennung von Gasen

Internationale Kooperation im German-Greek Research and Innovation Programme

Nachhaltige Aufbereitung von Gasen: Im Projekt „CO2-Abtrennung mittels Nano-Carbon basierter Mixed-Matrix-Membranen“ (GG CO2) hat ein Forschungsteam der TH Köln in Zusammenarbeit mit dem griechischen Institut Demokritos sowie den Firmen FutureCarbon und Advise eine innovative Membran erstellt, mit der einzelne Gase aus Gasgemischen abgetrennt werden können, um beispielsweise Biogas aufzubereiten. Im Fokus stand dabei das klimarelevante Gas CO2.

„Die Trennung von Gasgemischen gewinnt gerade im Hinblick auf die Energiewende, aber auch für die effiziente Nutzung von Ressourcen, eine immer größere Bedeutung. Ein Beispiel ist Biogas, das sich unter anderem aus Abfällen regenerativ gewinnen lässt. Problematisch ist, dass nicht aufbereitetes Biogas – ähnlich wie Erdgas oder Prozessabgase aus der Industrie – in der Regel eine beträchtliche Menge an Verunreinigungen wie Kohlenstoffdioxid enthält – das schmälert die Effizienz der Verbrennung“, sagt Prof. Dr. Tim Schubert vom Institut für Anlagen und Verfahrenstechnik (IAV) der TH Köln. „Die Einspeisung von Biogas in das Gasnetz findet heute auch mangels technisch einsetzbarer und ökonomisch tragbarer Lösungen der Aufreinigung noch nicht statt. Um den Brennstoff nutzbar zu machen und die gesetzlichen Anforderungen für die Einspeisung zu erfüllen, ist eine Aufreinigung erforderlich.“

Mixed-Matrix-Membran

Die Wissenschaftlerinnen und Wissenschaftler erarbeiteten dafür einen innovativen Ansatz zur CO2-Abrennung: sie integrierten Nanomaterialien in eine Mixed-Matrix-Membran, die auf einer Polymermembran basiert. Mit Hilfe von Polymembranen funktioniert prinzipiell die Abtrennung von CO2 aus Erdgas, allerdings weisen sie insgesamt eine nur zu geringe Durchlässigkeit und damit Kapazität auf. Um die Polymermembran zu optimieren und damit bei gegebener Membranfläche mehr Kohlenstoffdioxid herauszufiltern, wurden sogenannte Carbon-Nanotubes – mikroskopisch kleine Kohlenstoff-Nanoröhrchen – in die Matrix hineingemischt.

„Um den Grundstoff für die Membran vorzubereiten, haben wir die Kohlenstoffpartikel mit Hilfe eines speziellen Verfahrens, der Redispergierung, in einer flüssigen Polymerlösung vereinzelt und die Verschlaufungen aufgelöst“, erklärt der wissenschaftliche Mitarbeiter Ruben Hammerstein. Im nächsten Schritt wurde aus der Dispersion, also dem Gemisch aus Polymerlösung und Carbon-Nanotubes, die Membran hergestellt. „Diese besteht aus einem Trägermaterial, das mechanisch stabil ist und den Druck des Gases aushält. Mit Hilfe eines sogenannten Spin-Coaters haben wir die poröse Trägermembran mittels Vakuum fixiert und sie mit bis zu 10.000 Umdrehungen rotieren lassen. Dadurch wird die Dispersion auf der Trägermembran sehr dünn verteilt und es entsteht eine homogene, wenige Mikrometer dicke Schicht, die oben aufliegt – das ist der gastrennende Teil der Membran“, so Hammerstein.

Pressemitteilung teilen:

Schreibe einen Kommentar