Do. Sep 19th, 2024

Japan floating photovoltaics market is projected to witness a CAGR of 7.43% during the forecast period FY2025- FY2032, growing from USD 230.14 million in FY2024 to USD 408.32 million in FY2032. The market has experienced significant growth in recent years and is expected to maintain a significant pace of expansion in the forecast years.

The floating photovoltaics (FPV) system is a feasible approach to the utilization of sunlight, particularly for countries with small land areas and over-population. Furthermore, with the rise in the demand for clean energy, especially in Japan, will boost the need for innovative renewable energy solutions such as floating photovoltaic. Manufacturers are constantly improving the technology for floating photovoltaics. Innovations in the durability of floating structures and advanced anchoring systems make floating photovoltaic installations more dependable and cost-effective. Moreover, supporting government policies and financial incentives regarding renewable energy projects will continue to drive the floating photovoltaic market growth significantly.

For instance, in May 2024, SolarDuck B.V. and Tokyo Land, a real estate company, built Japan’s first offshore floating PV project. The floating PV plant’s energy will be stored in a nearby BESS unit and power a nearby electric fleet.

Modular Design and Ease of Scalability of the Systems

The modular design of a floating photovoltaics system is scalable in nature and allows for incremental expansion of plants. The utility provider will be able to change the size of the plant from small to large capacity by adding more modules as the demand for renewable energy increases or as more capital is available. The modular design capability is particularly beneficial for developers and utilities as scalability allows for adjustments based on performance data and evolving energy needs, which result in floating photovoltaic systems in more manageable and lower-risk investments.

The modular design of floating photovoltaic systems can be customized to meet specific project requirements and environmental conditions. The module sizes, types, and configurations could be chosen based on the water body characteristics and climatic conditions to achieve the energy production goals through a floating photovoltaics system. Moreover, the customization capability feature makes FPV systems a versatile solution. Floating photovoltaics (FPV) systems are able to cater to unique site conditions and optimize energy output, which further boosts the adoption of floating photovoltaics in Japan.

In addition, the deployment of modular design floating photovoltaics on water bodies is easy and economical. The floating photovoltaic systems can be installed on any water surface type and size, including artificial reservoirs, natural lakes, ponds, rivers, impounding dams, and oceans. Even the design modules are capable of adapting the varying shapes and depths of water bodies, which boosts floating photovoltaics applicability and market potential.

Thus, the modular design and scalability attributes of floating photovoltaic systems offer flexibility, cost efficiency, adaptability to different project sizes and conditions, and improved financial viability, which drive the growth of the Japan floating photovoltaics market.

For instance, as per the FY2022 report by the National Renewable Energy Laboratory, Japan accounted for approximately 10% of the total floating photovoltaic (FPV) installed capacity.

Climate Resilience Feature to Cater the Market Demand

The floating photovoltaic system significantly supports climate resilience by providing a sustainable and adaptive approach to energy generation. The system offers several environmental benefits such as low evaporation rate which lowers the impact of climate change. Additionally, floating photovoltaic systems preserve valuable water resources which could be used for agriculture, housing, or natural habitat activities. The floating photovoltaic systems contribute to minimizing the issue of using land, preserving the ecosystems, and keeping the land available for other commercial uses. Among different forms of renewable energy generation technologies, the floating photovoltaics technology saves land and water resources which would be used for urbanization and agricultural expansion within the country.

Floating photovoltaics systems are inherently resilient to direct impacts of climate change, such as rising sea levels and increased flooding. Floating photovoltaics installations are designed to float on water which overcomes the problems associated with traditional ground-mounted solar farms. In Japan, coastal and low-lying areas, where rising sea levels pose a significant risk to renewable energy infrastructure, floating photovoltaics systems offer a robust alternative which continue operating even as water levels change.

For instance, in May 2024, SolarDuck B.V. decided to open new office in Tokyo (Japan) to oversee the country’s activities. Asia-Pacific offers attractive growth prospects for market growth. Developing countries are able to understand the FPV advantage on climate which boosts the FPV demand in the market.

Read More: https://www.marketsandata.com/industry-reports/japan-floating-photovoltaics-market

Technological Development in Market Creates Opportunity

The development of tracking solar system technology is creating new opportunities for the floating photovoltaics market. The tracking panels boost the efficiency and energy yield in solar installations at water bodies. Solar-tracking PV systems observe the movement of the sun and change the position and orientation of solar modules with the view of collecting the highest possible solar power.

Compared to stationary systems, floating photovoltaics tracking systems are capable of maximizing sunlight captured by the panels since the adjustment of the panel is made according to the movement of the sun. Consequently, the total energy yield from tracking FPV systems is higher than the fixed systems. The increased energy output would significantly enhance the profitability of floating photovoltaics installations, especially in regions with high solar irradiance. In addition, the tracking feature in floating photovoltaics systems improves the return on investment for solar projects which make the system more financially attractive for developers and utility providers.

Moreover, modern tracking systems would be able adjust the panels position according to the directions of sun rays, that stands well with the weather conditions to protect the panels and optimize performance. Upcoming developments in tracking technology make the FPV systems more adaptable to changing environmental conditions, including the speed of wind and water currents which boosts the demand for floating photovoltaics technology in the market.

Development of tracking technology for floating photovoltaics systems represents a significant advancement which enhances the efficiency, performance, and market potential of floating photovoltaics (FPV) installations in the forecast years.

Stationary Floating Solar Panels Dominates the Market Share

Japan floating photovoltaics market is dominated by the stationary floating solar panel due to high adoption rate in country. Stationary floating solar panels offer fewer points of failure which lowers lifetime maintenance and operating expenses of the system. Stationary floating solar panel products are economical and cost effective in nature. Additionally, regulatory agencies and governments consistently promote the use of renewable energy technology, such as floating photovoltaics technology which drive the growth of the market for stationary floating solar panel products. Fixed floating solar panels have made the product economically viable option for investors and developers. Several beneficial aspects of stationary floating solar panels sustain their dominance in the market.

Download Free Sample Report

Central Region to Lead the Floating Photovoltaics Market Share in Japan

Japan floating photovoltaics market is expected to be dominated by the central region, including Kanto and Chubu, in the forecast years. The central region includes several manufacturers of solar panels and developers of solar projects, which makes the region particularly appropriate for the deployment of floating photovoltaic panels. The region includes several water bodies consisting of major reservoirs, lakes, and irrigation ponds, possibly ideal for installing floating solar panels. The region includes several dams and man-made reservoirs that generate hydroelectric power, creating the opportunity to generate electricity in the region using FPV solar panels.

Central Japan has ambitious renewable energy goals and state policy to reduce state greenhouse gas emissions and have cleaner energy which drive the floating photovoltaic markets in the country. The Japan floating photovoltaics market is driven by the country’s targets for generating renewable energy and state policies to lower greenhouse gas emissions and provide cleaner energy.

For instance, Kyocera company has developed the floating solar (FPV) power plant on the Yamakura Dam reservoir in Chiba Prefecture, Japan. The FPV plant capacity is 13.7MW, which is the largest plant in Japan.

Future Market Scenario (FY2025 – FY2032F)

1. Ongoing innovations and advancement in floating photovoltaics technology will improve the design of panels which will enhance the feasibility and cost-effectiveness of the systems.

2. Japan pushes and focuses on more sustainable energy solutions for generating electricity, which is expected to drive the growth of floating photovoltaics solar panels in the country.

3. Features such as solar tracking and hydraulic pumps of floating photovoltaics systems will boost the demand for solar-tracking floating solar panels in the forecast years.

4. Rise in government supportive policies and financial incentives for renewable energy projects is anticipated to boost the photovoltaics market in Japan.

Report Scope

“Japan Floating Photovoltaics Market Assessment, Opportunities and Forecast, FY2018-FY2032F”, is a comprehensive report by Markets and Data, providing in-depth analysis and qualitative and quantitative assessment of the current state of Japan floating photovoltaics market, industry dynamics, and challenges. The report includes market size, segmental shares, growth trends, opportunities, and forecast between FY2025 and FY2032. Additionally, the report profiles the leading players in the industry, mentioning their respective market share, business models, competitive intelligence, etc.

Contact
Mr. Vivek Gupta
5741 Cleveland street,
Suite 120, VA beach, VA, USA 23462
Tel: +1 (757) 343-3258
Email: info@marketsandata.com
Website: https://www.marketsandata.com

Pressemitteilung teilen:

Schreibe einen Kommentar